This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
With this column, DAMA International’s streak of quarterly columns since mid-2001 is coming to an end. It has been an incredible run. I hope it is just “see you soon” rather than “goodbye.” The columns have featured the activities and incredible work of DAMA International over the past two decades. Thank you, DAMA, and I […].
Paco Nathan ‘s latest column dives into datagovernance. This month’s article features updates from one of the early data conferences of the year, Strata Data Conference – which was held just last week in San Francisco. In particular, here’s my Strata SF talk “Overview of DataGovernance” presented in article form.
In this episode I’ll cover themes from Sci Foo and important takeaways that data science teams should be tracking. First and foremost: there’s substantial overlap between what the scientific community is working toward for scholarly infrastructure and some of the current needs of datagovernance in industry.
data science’s emergence as an interdisciplinary field – from industry, not academia. why datagovernance, in the context of machine learning is no longer a “dry topic” and how the WSJ’s “global reckoning on datagovernance” is potentially connected to “premiums on leveraging data science teams for novel business cases”.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content