This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
As enterprises collect increasing amounts of data from various sources, the structure and organization of that data often need to change over time to meet evolving analytical needs. Schema evolution enables adding, deleting, renaming, or modifying columns without needing to rewrite existing data.
Athena provides a simplified, flexible way to analyze petabytes of data where it lives. You can analyze data or build applications from an Amazon Simple Storage Service (Amazon S3) datalake and 30 data sources, including on-premises data sources or other cloud systems using SQL or Python.
Data governance shows up as the fourth-most-popular kind of solution that enterprise teams were adopting or evaluating during 2019. That’s a lot of priorities – especially when you group together closely related items such as data lineage and metadata management which rank nearby. in lieu of simply landing in a datalake.
Optionally, specify the Amazon S3 storage class for the data in Amazon Security Lake. For more information, refer to Lifecycle management in Security Lake. Review the details and create the datalake. Choose Next. For sts_role_arn , enter the ARN of pipeline-role. Set region as us-east-1.
I mention this here because there was a lot of overlap between current industry data governance needs and what the scientific community is working toward for scholarly infrastructure. The gist is, leveraging metadata about research datasets, projects, publications, etc., 2018 – Global reckoning about data governance, aka “Oops!
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content