This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
With those stakes and the long forecast horizon, we do not rely on a single statistical model based on historical trends. It provides the occasion for deeper exploration of which inputs that can be influenced and which risks can be proactively managed. The alternative we use is the forecast triangulation framework described above.
It is even more essential now that supply chains are empowered with a high standard of data and analytics sophistication to be able to cost-effectively serve the company’s purpose and combat risks at the same time. You know, Chief Risk Officers, for example, will no longer be confined to the credit industry. Anushruti: Perfect.
When CEO Plinio Ayala joined Per Scholas in 2003, he noticed there weren’t enough skilled technicians to fix the hardware the organization collected. It was just talking about how computers work and the theory of code and the theory of statistical analysis and how best to write your code,” says Wilson.
We develop an ordinary least squares (OLS) linear regression model of equity returns using Statsmodels, a Python statistical package, to illustrate these three error types. CI theory was developed around 1937 by Jerzy Neyman, a mathematician and one of the principal architects of modern statistics.
In 2003, Oxford University professor Nick Bostrom asked what happens if you ask a smart AI to make as many paperclips as possible. When I teach MBA students, we’re more worried about the risks of AI in the here and now.” And the earlier they start, the more power they’ll have.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content