Remove 2007 Remove Modeling Remove Uncertainty
article thumbnail

The trinity of errors in applying confidence intervals: An exploration using Statsmodels

O'Reilly on Data

Recall from my previous blog post that all financial models are at the mercy of the Trinity of Errors , namely: errors in model specifications, errors in model parameter estimates, and errors resulting from the failure of a model to adapt to structural changes in its environment. For example, if a stock has a beta of 1.4

article thumbnail

Why model calibration matters and how to achieve it

The Unofficial Google Data Science Blog

by LEE RICHARDSON & TAYLOR POSPISIL Calibrated models make probabilistic predictions that match real world probabilities. While calibration seems like a straightforward and perhaps trivial property, miscalibrated models are actually quite common. Why calibration matters What are the consequences of miscalibrated models?

Modeling 122
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Transforming FSI in ASEAN with Cloud Analytics

CIO Business Intelligence

auxmoney began as a peer-to-peer lender in 2007, with the mission of improving access to credit and promoting financial inclusion. Right from the start, auxmoney leveraged cloud-enabled analytics for its unique risk models and digital processes to further its mission. We see this demonstrated in S-Bank , ranked No.

article thumbnail

The Lean Analytics Cycle: Metrics > Hypothesis > Experiment > Act

Occam's Razor

Let's listen in as Alistair discusses the lean analytics model… The Lean Analytics Cycle is a simple, four-step process that shows you how to improve a part of your business. Another way to find the metric you want to change is to look at your business model. The business model also tells you what the metric should be.

Metrics 157
article thumbnail

Towards optimal experimentation in online systems

The Unofficial Google Data Science Blog

Crucially, it takes into account the uncertainty inherent in our experiments. Experiments, Parameters and Models At Youtube, the relationships between system parameters and metrics often seem simple — straight-line models sometimes fit our data well. It is a big picture approach, worthy of your consideration.

article thumbnail

Changing assignment weights with time-based confounders

The Unofficial Google Data Science Blog

For this reason we don’t report uncertainty measures or statistical significance in the results of the simulation. In practice, one may want to use more complex models to make these estimates. For example, one may want to use a model that can pool the epoch estimates with each other via hierarchical modeling (a.k.a.

article thumbnail

Measuring Validity and Reliability of Human Ratings

The Unofficial Google Data Science Blog

Editor's note : The relationship between reliability and validity are somewhat analogous to that between the notions of statistical uncertainty and representational uncertainty introduced in an earlier post. But for more complicated metrics like xRR, our preference is to bootstrap when measuring uncertainty.