This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Quantification of forecast uncertainty via simulation-based prediction intervals. In the first plot, the raw weekly actuals (in red) are adjusted for a level change in September 2011 and an anomalous spike near October 2012. Prediction Intervals A statistical forecasting system should not lack uncertainty quantification.
Remember that the raw number is not the only important part, we would also measure statistical significance. By 2011, the company had 20 full-time photographers on staff. They might deal with uncertainty, but they're not random. The properties with professional photography had 2-3 times the number of bookings!
Integrity of statistical estimates based on Data. Having spent 18 years working in various parts of the Insurance industry, statistical estimates being part of the standard set of metrics is pretty familiar to me [7]. The thing with statistical estimates is that they are never a single figure but a range. million ± £0.5
SCOTT Time series data are everywhere, but time series modeling is a fairly specialized area within statistics and data science. They may contain parameters in the statistical sense, but often they simply contain strategically placed 0's and 1's indicating which bits of $alpha_t$ are relevant for a particular computation. by STEVEN L.
Editor's note : The relationship between reliability and validity are somewhat analogous to that between the notions of statisticaluncertainty and representational uncertainty introduced in an earlier post. But for more complicated metrics like xRR, our preference is to bootstrap when measuring uncertainty.
Statistical power is traditionally given in terms of a probability function, but often a more intuitive way of describing power is by stating the expected precision of our estimates. This is a quantity that is easily interpretable and summarizes nicely the statistical power of the experiment. In the U.S.,
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content