This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
the weight given to Likes in our video recommendation algorithm) while $Y$ is a vector of outcome measures such as different metrics of user experience (e.g., Taking measurements at parameter settings further from control parameter settings leads to a lower variance estimate of the slope of the line relating the metric to the parameter.
It is important that we can measure the effect of these offline conversions as well. Panel studies make it possible to measure user behavior along with the exposure to ads and other online elements. Let's take a look at larger groups of individuals whose aggregate behavior we can measure. days or weeks).
In an ideal world, experimentation through randomization of the treatment assignment allows the identification and consistent estimation of causal effects. In fact, Hainmueller (2012) show that entropy balancing is equivalent to estimating the weights as a log-linear model of the covariate functions $c_j(X)$. 2012): 25-46.
We data scientists now have access to tools that allow us to run a large numbers of experiments, and then to slice experimental populations by any combination of dimensions collected. Make experimentation cheap and understand the cost of bad decisions. This leads to the proliferation of post hoc hypotheses. What is to be done?
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content