This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
If the relationship of $X$ to $Y$ can be approximated as quadratic (or any polynomial), the objective and constraints as linear in $Y$, then there is a way to express the optimization as a quadratically constrained quadratic program (QCQP). However, joint optimization is possible by increasing both $x_1$ and $x_2$ at the same time.
In an ideal world, experimentation through randomization of the treatment assignment allows the identification and consistent estimation of causal effects. It should be noted that inverse probability weighting is not generally optimal (i.e., This is often referred to as the positivity assumption. the curse of dimensionality).
In the time since that announcement, our team has been working extremely hard to combine technologies, customer bases, and internal operations into a single organization that achieves the goal we set out to accomplish in 2012. Recently, that merger matured to a point where we felt it necessary to change the way we talk about the products.
Fujitsu remains very much interested in the mainframe market, with a new model still on its roadmap for 2024, and a move under way to “shift its mainframes and UNIX servers to the cloud, gradually enhancing its existing business systems to optimize the experience for its end-users.”
To provide some coherence to the music, I decided to use Taylor Swift songs since her discography covers the time span of most papers that I typically read: Her main albums were released in 2006, 2008, 2010, 2012, 2014, 2017, 2019, 2020, and 2022. This choice also inspired me to call my project Swift Papers.
We data scientists now have access to tools that allow us to run a large numbers of experiments, and then to slice experimental populations by any combination of dimensions collected. Make experimentation cheap and understand the cost of bad decisions. This leads to the proliferation of post hoc hypotheses. Consider your loss function.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content