This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Fortunately, new predictiveanalytics algorithms can make this easier. Last summer, a report by Deloitte showed that more CFOs are using predictiveanalytics technology. The evidence demonstrating the effectiveness of predictiveanalytics for forecasting prices of these securities has been relatively mixed.
New advances in predictiveanalytics will help mobile app developers navigate these changes and develop better technology to adapt. Predictiveanalytics is especially important for developers creating apps in emerging markets. Predictiveanalytics captures rapidly changing variables in an increasingly global world.
Most forecasts indicate that it is going to increase. A World Energy Outlook report concludes that global wind energy capacity will increase between 2014 (762 TWh) and 2020 by 85% to about 1,400 TWh. Big data is going to be essential to help them meet those demands.
It also underscored the importance of creating data-driven modeling capabilities, and developing the people, processes, mindset and technology to create a true culture of analytics within our organizations. The oil collapse of 2014 is another example of the importance of scenario planning.
This article, part of the IBM and Pfizer’s series on the application of AI techniques to improve clinical trial performance, focuses on enrollment and real-time forecasting. However, we have observed that greater value comes from employing ensemble methods to achieve more accurate and robust predictions.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content