Remove 2014 Remove Statistics Remove Uncertainty
article thumbnail

Fitting Bayesian structural time series with the bsts R package

The Unofficial Google Data Science Blog

SCOTT Time series data are everywhere, but time series modeling is a fairly specialized area within statistics and data science. They may contain parameters in the statistical sense, but often they simply contain strategically placed 0's and 1's indicating which bits of $alpha_t$ are relevant for a particular computation. by STEVEN L.

article thumbnail

Our quest for robust time series forecasting at scale

The Unofficial Google Data Science Blog

Quantification of forecast uncertainty via simulation-based prediction intervals. Prediction Intervals A statistical forecasting system should not lack uncertainty quantification. OTexts, 2014. Journal of Official Statistics 6.1 2014): 276. [7] References [1] Hyndman, Rob J., and George Athanasopoulos.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Towards optimal experimentation in online systems

The Unofficial Google Data Science Blog

If $Y$ at that point is (statistically and practically) significantly better than our current operating point, and that point is deemed acceptable, we update the system parameters to this better value. Crucially, it takes into account the uncertainty inherent in our experiments.

article thumbnail

Attributing a deep network’s prediction to its input features

The Unofficial Google Data Science Blog

Typically, causal inference in data science is framed in probabilistic terms, where there is statistical uncertainty in the outcomes as well as model uncertainty about the true causal mechanism connecting inputs and outputs. CoRR, 2014. [2] Anguelov, Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, and Rabinovich, Andrew.

IT 70