Remove 2015 Remove Data mining Remove Optimization
article thumbnail

Take Your SQL Skills To The Next Level With These Popular SQL Books

datapine

Amongst the various topics that it covers, ”SQL Performance Explained” offers knowledge into: Correctly applying SQL functions Using indexes correctly How to use LIKE queries efficiently How to optimize join operations Data clustering Database scalability. 17) “SQL Database Programming” (2015 Edition) By Chris Fehily.

article thumbnail

Towards optimal experimentation in online systems

The Unofficial Google Data Science Blog

If the relationship of $X$ to $Y$ can be approximated as quadratic (or any polynomial), the objective and constraints as linear in $Y$, then there is a way to express the optimization as a quadratically constrained quadratic program (QCQP). However, joint optimization is possible by increasing both $x_1$ and $x_2$ at the same time.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Experiment design and modeling for long-term studies in ads

The Unofficial Google Data Science Blog

This is essentially the same as finding a truly useful objective to optimize. Recently, we presented some basic insights from our effort to measure and predict long-term effects at KDD 2015 [1]. We use this knowledge to define objective functions to optimize our ads system with a view towards the long-term.

article thumbnail

Changing assignment weights with time-based confounders

The Unofficial Google Data Science Blog

Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. 2015): 37-45. [3] An efficient bandit algorithm for realtime multivariate optimization." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2] Scott, Steven L.

article thumbnail

Modernize Using The BI & Analytics Magic Quadrant

Rita Sallam

These intentions are also reflected in Gartner’s previous webinar poll results in March and in our 2015 market share results, which show a 63% growth in Modern BI market growth versus a 1.7% decline in traditional BI ( See: Market Share Analysis: Business Intelligence and Analytics Software, 2015 ).

article thumbnail

MLOps and the evolution of data science

IBM Big Data Hub

Machine learning (ML), a subset of artificial intelligence (AI), is an important piece of data-driven innovation. Machine learning engineers take massive datasets and use statistical methods to create algorithms that are trained to find patterns and uncover key insights in data mining projects. MLOps and IBM Watsonx.ai

article thumbnail

Using Empirical Bayes to approximate posteriors for large "black box" estimators

The Unofficial Google Data Science Blog

Limitations Second order calibration, like ordinary calibration, is intended to be easy and useful, not comprehensive or optimal, and it shares some of ordinary calibration’s limitations. Both methods can be wrong for slices of the data while being correct on average, since they only use the covariate information through $t$.

KDD 40