Remove 2015 Remove Knowledge Discovery Remove Risk
article thumbnail

Changing assignment weights with time-based confounders

The Unofficial Google Data Science Blog

One reason to do ramp-up is to mitigate the risk of never before seen arms. A ramp-up strategy may mitigate the risk of upsetting the site’s loyal users who perhaps have strong preferences for the current statistics that are shown. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining.

article thumbnail

Using Empirical Bayes to approximate posteriors for large "black box" estimators

The Unofficial Google Data Science Blog

These estimates can be useful to make risk-adjusted decisions and explore-exploit trade-offs, or to find situations where the underlying regression method is particularly good or bad. References [1] Omkar Muralidharan, Amir Najmi "Second Order Calibration: A Simple Way To Get Approximate Posteriors" , Technical Report, Google, 2015. [2]

KDD 40
article thumbnail

Explaining black-box models using attribute importance, PDPs, and LIME

Domino Data Lab

This dataset classifies customers based on a set of attributes into two credit risk groups – good or bad. This is to be expected, as there is no reason for a perfect 50:50 separation of the good vs. bad credit risk. 2015) for additional details. Conference on Knowledge Discovery and Data Mining, pp.

Modeling 139