Remove 2015 Remove Statistics Remove Uncertainty
article thumbnail

Changing assignment weights with time-based confounders

The Unofficial Google Data Science Blog

For example, imagine a fantasy football site is considering displaying advanced player statistics. A ramp-up strategy may mitigate the risk of upsetting the site’s loyal users who perhaps have strong preferences for the current statistics that are shown. One reason to do ramp-up is to mitigate the risk of never before seen arms.

article thumbnail

Towards optimal experimentation in online systems

The Unofficial Google Data Science Blog

If $Y$ at that point is (statistically and practically) significantly better than our current operating point, and that point is deemed acceptable, we update the system parameters to this better value. Crucially, it takes into account the uncertainty inherent in our experiments.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Fitting Bayesian structural time series with the bsts R package

The Unofficial Google Data Science Blog

SCOTT Time series data are everywhere, but time series modeling is a fairly specialized area within statistics and data science. They may contain parameters in the statistical sense, but often they simply contain strategically placed 0's and 1's indicating which bits of $alpha_t$ are relevant for a particular computation. by STEVEN L.

article thumbnail

Using random effects models in prediction problems

The Unofficial Google Data Science Blog

We often use statistical models to summarize the variation in our data, and random effects models are well suited for this — they are a form of ANOVA after all. In the context of prediction problems, another benefit is that the models produce an estimate of the uncertainty in their predictions: the predictive posterior distribution.

article thumbnail

Disrupt and Innovate in a Data-Driven World

Cloudera

Bridgespan Group estimated in 2015 that only 6% of nonprofits use data to drive improvements in their work. For example, applying machine learning to wind forecasting is expected to reduce uncertainty in wind energy production by more than 45% and will allow utilities to integrate wind more easily with traditional forms of power supply.

article thumbnail

Estimating causal effects using geo experiments

The Unofficial Google Data Science Blog

Statistical power is traditionally given in terms of a probability function, but often a more intuitive way of describing power is by stating the expected precision of our estimates. This is a quantity that is easily interpretable and summarizes nicely the statistical power of the experiment. In the U.S.,

article thumbnail

The trinity of errors in applying confidence intervals: An exploration using Statsmodels

O'Reilly on Data

Because of this trifecta of errors, we need dynamic models that quantify the uncertainty inherent in our financial estimates and predictions. Practitioners in all social sciences, especially financial economics, use confidence intervals to quantify the uncertainty in their estimates and predictions.