Remove 2016 Remove Statistics Remove Uncertainty
article thumbnail

The trinity of errors in applying confidence intervals: An exploration using Statsmodels

O'Reilly on Data

Because of this trifecta of errors, we need dynamic models that quantify the uncertainty inherent in our financial estimates and predictions. Practitioners in all social sciences, especially financial economics, use confidence intervals to quantify the uncertainty in their estimates and predictions.

article thumbnail

Belcorp reimagines R&D with AI

CIO Business Intelligence

These circumstances have induced uncertainty across our entire business value chain,” says Venkat Gopalan, chief digital, data and technology officer, Belcorp. “As To address the challenges, the company has leveraged a combination of computer vision, neural networks, NLP, and fuzzy logic.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Fitting Bayesian structural time series with the bsts R package

The Unofficial Google Data Science Blog

SCOTT Time series data are everywhere, but time series modeling is a fairly specialized area within statistics and data science. They may contain parameters in the statistical sense, but often they simply contain strategically placed 0's and 1's indicating which bits of $alpha_t$ are relevant for a particular computation. by STEVEN L.

article thumbnail

Towards optimal experimentation in online systems

The Unofficial Google Data Science Blog

If $Y$ at that point is (statistically and practically) significantly better than our current operating point, and that point is deemed acceptable, we update the system parameters to this better value. Crucially, it takes into account the uncertainty inherent in our experiments.

article thumbnail

Attributing a deep network’s prediction to its input features

The Unofficial Google Data Science Blog

Typically, causal inference in data science is framed in probabilistic terms, where there is statistical uncertainty in the outcomes as well as model uncertainty about the true causal mechanism connecting inputs and outputs. CoRR, 2016. [3] CoRR, 2014. [2]

IT 68
article thumbnail

Using random effects models in prediction problems

The Unofficial Google Data Science Blog

We often use statistical models to summarize the variation in our data, and random effects models are well suited for this — they are a form of ANOVA after all. In the context of prediction problems, another benefit is that the models produce an estimate of the uncertainty in their predictions: the predictive posterior distribution.

article thumbnail

Misleading Statistics Examples – Discover The Potential For Misuse of Statistics & Data In The Digital Age

datapine

1) What Is A Misleading Statistic? 2) Are Statistics Reliable? 3) Misleading Statistics Examples In Real Life. 4) How Can Statistics Be Misleading. 5) How To Avoid & Identify The Misuse Of Statistics? If all this is true, what is the problem with statistics? What Is A Misleading Statistic?