This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
This carries the risk of this modification performing worse than simpler approaches like majority under-sampling. note that this variant “performs worse than plain under-sampling based on AUC” when tested on the Adult dataset (Dua & Graff, 2017). Chawla et al. Indeed, in the original paper Chawla et al. Cost, S., & Salzberg, S.
One reason to do ramp-up is to mitigate the risk of never before seen arms. A ramp-up strategy may mitigate the risk of upsetting the site’s loyal users who perhaps have strong preferences for the current statistics that are shown. Proceedings of the 13th ACM SIGKDD international conference on Knowledgediscovery and data mining.
This dataset classifies customers based on a set of attributes into two credit risk groups – good or bad. This is to be expected, as there is no reason for a perfect 50:50 separation of the good vs. bad credit risk. In IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI), pages 24–30, Melbourne, Australia, 2017.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content