Remove 2019 Remove Deep Learning Remove Modeling
article thumbnail

A 2019 Guide to Speech Synthesis with Deep Learning

KDnuggets

In this article, we’ll look at research and model architectures that have been written and developed to do just that using deep learning.

article thumbnail

6 trends framing the state of AI and ML

O'Reilly on Data

Our analysis of ML- and AI-related data from the O’Reilly online learning platform indicates: Unsupervised learning surged in 2019, with usage up by 172%. Deep learning cooled slightly in 2019, slipping 10% relative to 2018, but deep learning still accounted for 22% of all AI/ML usage.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

SiftSeq: Classifying short DNA sequences with deep learning

Insight

In this post, I demonstrate how deep learning can be used to significantly improve upon earlier methods, with an emphasis on classifying short sequences as being human, viral, or bacterial. As I discovered, deep learning is a powerful tool for short sequence classification and is likely to be useful in many other applications as well.

article thumbnail

Enabling the Deep Learning Revolution

KDnuggets

Deep learning models are revolutionizing the business and technology world with jaw-dropping performances in one application area after another. Read this post on some of the numerous composite technologies which allow deep learning its complex nonlinearity.

article thumbnail

AI adoption in the enterprise 2020

O'Reilly on Data

The new survey, which ran for a few weeks in December 2019, generated an enthusiastic 1,388 responses. Supervised learning is the most popular ML technique among mature AI adopters, while deep learning is the most popular technique among organizations that are still evaluating AI. But what kind?

article thumbnail

Open Source Data Science Projects 2019

Data Science 101

Is the list missing a project released in 2019? Open Source Data Science Projects. If so, please leave a comment.

article thumbnail

Easily Deploy Deep Learning Models in Production

KDnuggets

Getting trained neural networks to be deployed in applications and services can pose challenges for infrastructure managers. Challenges like multiple frameworks, underutilized infrastructure and lack of standard implementations can even cause AI projects to fail. This blog explores how to navigate these challenges.