Remove Analytics Remove Data Transformation Remove Data Warehouse
article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis.

article thumbnail

Ingest data from Google Analytics 4 and Google Sheets to Amazon Redshift using Amazon AppFlow

AWS Big Data

Google Analytics 4 (GA4) provides valuable insights into user behavior across websites and apps. But what if you need to combine GA4 data with other sources or perform deeper analysis? It also helps you securely access your data in operational databases, data lakes, or third-party datasets with minimal movement or copying of data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

At AWS, we are committed to empowering organizations with tools that streamline data analytics and transformation processes. This integration enables data teams to efficiently transform and manage data using Athena with dbt Cloud’s robust features, enhancing the overall data workflow experience.

Data Lake 100
article thumbnail

Accelerate your data workflows with Amazon Redshift Data API persistent sessions

AWS Big Data

Amazon Redshift is a fast, scalable, secure, and fully managed cloud data warehouse that you can use to analyze your data at scale. He brings extensive experience on Software Development, Architecture and Analytics from industries like finance, telecom, retail and healthcare.

article thumbnail

Unlock the True Potential of Your Data with ETL and ELT Pipeline

Analytics Vidhya

Introduction This article will explain the difference between ETL (Extract, Transform, Load) and ELT (Extract, Load, Transform) when data transformation occurs. In ETL, data is extracted from multiple locations to meet the requirements of the target data file and then placed into the file.

article thumbnail

Most Frequently Asked Azure Data Factory Interview Questions

Analytics Vidhya

The data-driven workflow in ADF orchestrates and automates data movement and data transformation.

article thumbnail

7 key Microsoft Azure analytics services (plus one extra)

CIO Business Intelligence

Insights hidden in your data are essential for optimizing business operations, finetuning your customer experience, and developing new products — or new lines of business, like predictive maintenance. And as businesses contend with increasingly large amounts of data, the cloud is fast becoming the logical place where analytics work gets done.

Data Lake 116