Remove Analytics Remove Data Transformation Remove Data Warehouse
article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis.

article thumbnail

SAP Datasphere Powers Business at the Speed of Data

Rocket-Powered Data Science

In fact, by putting a single label like AI on all the steps of a data-driven business process, we have effectively not only blurred the process, but we have also blurred the particular characteristics that make each step separately distinct, uniquely critical, and ultimately dependent on specialized, specific technologies at each step.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

At AWS, we are committed to empowering organizations with tools that streamline data analytics and transformation processes. This integration enables data teams to efficiently transform and manage data using Athena with dbt Cloud’s robust features, enhancing the overall data workflow experience.

Data Lake 104
article thumbnail

Ingest data from Google Analytics 4 and Google Sheets to Amazon Redshift using Amazon AppFlow

AWS Big Data

Google Analytics 4 (GA4) provides valuable insights into user behavior across websites and apps. But what if you need to combine GA4 data with other sources or perform deeper analysis? It also helps you securely access your data in operational databases, data lakes, or third-party datasets with minimal movement or copying of data.

article thumbnail

Accelerate your data workflows with Amazon Redshift Data API persistent sessions

AWS Big Data

Amazon Redshift is a fast, scalable, secure, and fully managed cloud data warehouse that you can use to analyze your data at scale. He brings extensive experience on Software Development, Architecture and Analytics from industries like finance, telecom, retail and healthcare.

article thumbnail

Database vs. Data Warehouse: What’s the Difference?

Jet Global

Whether the reporting is being done by an end user, a data science team, or an AI algorithm, the future of your business depends on your ability to use data to drive better quality for your customers at a lower cost. So, when it comes to collecting, storing, and analyzing data, what is the right choice for your enterprise?

article thumbnail

Unlock the True Potential of Your Data with ETL and ELT Pipeline

Analytics Vidhya

Introduction This article will explain the difference between ETL (Extract, Transform, Load) and ELT (Extract, Load, Transform) when data transformation occurs. In ETL, data is extracted from multiple locations to meet the requirements of the target data file and then placed into the file.