Remove Analytics Remove Data Transformation Remove Snapshot
article thumbnail

10 Examples of How Big Data in Logistics Can Transform The Supply Chain

datapine

Table of Contents 1) Benefits Of Big Data In Logistics 2) 10 Big Data In Logistics Use Cases Big data is revolutionizing many fields of business, and logistics analytics is no exception. The complex and ever-evolving nature of logistics makes it an essential use case for big data applications.

Big Data 275
article thumbnail

Migrate Amazon Redshift from DC2 to RA3 to accommodate increasing data volumes and analytics demands

AWS Big Data

With the ever-increasing volume of data available, Dafiti faces the challenge of effectively managing and extracting valuable insights from this vast pool of information to gain a competitive edge and make data-driven decisions that align with company business objectives. TB of data.

Data Lake 106
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Ensuring Data Transformation Quality with dbt Core

Wayne Yaddow

How dbt Core aids data teams test, validate, and monitor complex data transformations and conversions Photo by NASA on Unsplash Introduction dbt Core, an open-source framework for developing, testing, and documenting SQL-based data transformations, has become a must-have tool for modern data teams as the complexity of data pipelines grows.

article thumbnail

Modernize a legacy real-time analytics application with Amazon Managed Service for Apache Flink

AWS Big Data

Organizations with legacy, on-premises, near-real-time analytics solutions typically rely on self-managed relational databases as their data store for analytics workloads. Near-real-time streaming analytics captures the value of operational data and metrics to provide new insights to create business opportunities.

article thumbnail

Orca Security’s journey to a petabyte-scale data lake with Apache Iceberg and AWS Analytics

AWS Big Data

One key component that plays a central role in modern data architectures is the data lake, which allows organizations to store and analyze large amounts of data in a cost-effective manner and run advanced analytics and machine learning (ML) at scale. To overcome these issues, Orca decided to build a data lake.

article thumbnail

Data Engineers Are Using AI to Verify Data Transformations

Wayne Yaddow

AI is transforming how senior data engineers and data scientists validate data transformations and conversions. Artificial intelligence-based verification approaches aid in the detection of anomalies, the enforcement of data integrity, and the optimization of pipelines for improved efficiency.

article thumbnail

Perform upserts in a data lake using Amazon Athena and Apache Iceberg

AWS Big Data

Apache Iceberg is an open table format for data lakes that manages large collections of files as tables. It supports modern analytical data lake operations such as create table as select (CTAS), upsert and merge, and time travel queries. However, this requires knowledge of a table’s current snapshots.