Remove Analytics Remove Data Warehouse Remove Snapshot
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

This post was co-written with Dipankar Mazumdar, Staff Data Engineering Advocate with AWS Partner OneHouse. Data architecture has evolved significantly to handle growing data volumes and diverse workloads. In practice, OTFs are used in a broad range of analytical workloads, from business intelligence to machine learning.

article thumbnail

Building end-to-end data lineage for one-time and complex queries using Amazon Athena, Amazon Redshift, Amazon Neptune and dbt

AWS Big Data

One-time and complex queries are two common scenarios in enterprise data analytics. Complex queries, on the other hand, refer to large-scale data processing and in-depth analysis based on petabyte-level data warehouses in massive data scenarios. Here, data modeling uses dbt on Amazon Redshift.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Manage your data warehouse cost allocations with Amazon Redshift Serverless tagging

AWS Big Data

Amazon Redshift Serverless makes it simple to run and scale analytics without having to manage your data warehouse infrastructure. For Filter by resource type , you can filter by Workgroup , Namespace , Snapshot , and Recovery Point. For more details on tagging, refer to Tagging resources overview.

article thumbnail

Open Data Lakehouse powered by Iceberg for all your Data Warehouse needs

Cloudera

Cloudera Contributors: Ayush Saxena, Tamas Mate, Simhadri Govindappa Since we announced the general availability of Apache Iceberg in Cloudera Data Platform (CDP), we are excited to see customers testing their analytic workloads on Iceberg. We will publish follow up blogs for other data services.

article thumbnail

How Gupshup built their multi-tenant messaging analytics platform on Amazon Redshift

AWS Big Data

Objective Gupshup wanted to build a messaging analytics platform that provided: Build a platform to get detailed insights, data, and reports about WhatsApp/SMS campaigns and track the success of every text message sent by the end customers. Additionally, extract, load, and transform (ELT) data processing is sped up and made easier.

Analytics 113
article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

In this blog post, we dive into different data aspects and how Cloudinary breaks the two concerns of vendor locking and cost efficient data analytics by using Apache Iceberg, Amazon Simple Storage Service (Amazon S3 ), Amazon Athena , Amazon EMR , and AWS Glue. SparkActions.get().expireSnapshots(iceTable).expireOlderThan(TimeUnit.DAYS.toMillis(7)).execute()

Data Lake 121
article thumbnail

Cloud Data Warehouse Migration 101: Expert Tips

Alation

There was a time when most CIOs would never consider putting their crown jewels — AKA customer data and associated analytics — into the cloud. But today, there is a magic quadrant for cloud databases and warehouses comprising more than 20 vendors. The cloud is no longer synonymous with risk. What do you migrate, how, and when?