This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Computer Vision: DataMining: Data Science: Application of scientific method to discovery from data (including Statistics, Machine Learning, data visualization, exploratory data analysis, experimentation, and more). Traditionally they are text-based but audio and pictures can also be used for interaction.
I provide below my perspective on what was interesting, innovative, and influential in my watch list of the Top 10 data innovation trends during 2020. 1) Automated Narrative Text Generation tools became incredibly good in 2020, being able to create scary good “deep fake” articles.
DQM consists of acquiring the data, implementing advanced data processes, distributing the data effectively and managing oversight data. We detailed the benefits and costs of good or bad quality data in our previous article on data quality management , where you can read the five important pillars to follow.
I have written articles in many places. In 2019, I was listed as the #1 Top Data Science Blogger to Follow on Twitter. I will be collecting links to those sources here. The list is not complete and will be constantly evolving. There are some older blogs that I will be including in the list below as I remember them and find them.
Companies in the distribution industry are particularly dependent on data, due to the complicated logistics issues they encounter. There are many reasons that data analytics and datamining are vital aspects of modern e-commerce strategies.
According to a recent survey conducted by IDC , 43% of respondents were drawing intelligence from 10 to 30 data sources in 2020, with a jump to 64% in 2021! With that much data flowing into analytics systems, the right data model is vital to helping your users derive actionable intelligence from them.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content