Remove Big Data Remove Data Architecture Remove Snapshot
article thumbnail

Manage concurrent write conflicts in Apache Iceberg on the AWS Glue Data Catalog

AWS Big Data

In modern data architectures, Apache Iceberg has emerged as a popular table format for data lakes, offering key features including ACID transactions and concurrent write support. The Data Catalog provides the functionality as the Iceberg catalog. Determine the changes in transaction, and write new data files.

Snapshot 117
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

This post was co-written with Dipankar Mazumdar, Staff Data Engineering Advocate with AWS Partner OneHouse. Data architecture has evolved significantly to handle growing data volumes and diverse workloads. Querying all snapshots, we can see that we created three snapshots with overwrites after the initial one.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Introducing Apache Iceberg in Cloudera Data Platform

Cloudera

Over the past decade, the successful deployment of large scale data platforms at our customers has acted as a big data flywheel driving demand to bring in even more data, apply more sophisticated analytics, and on-board many new data practitioners from business analysts to data scientists.

Snapshot 110
article thumbnail

Use Apache Iceberg in your data lake with Amazon S3, AWS Glue, and Snowflake

AWS Big Data

They understand that a one-size-fits-all approach no longer works, and recognize the value in adopting scalable, flexible tools and open data formats to support interoperability in a modern data architecture to accelerate the delivery of new solutions. Snowflake can query across Iceberg and Snowflake table formats.

Data Lake 106
article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

While traditional extract, transform, and load (ETL) processes have long been a staple of data integration due to its flexibility, for common use cases such as replication and ingestion, they often prove time-consuming, complex, and less adaptable to the fast-changing demands of modern data architectures.

article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

Apache Iceberg brings the reliability and simplicity of SQL tables to big data, while making it possible for processing engines such as Apache Spark, Trino, Apache Flink, Presto, Apache Hive, and Impala to safely work with the same tables at the same time. SparkActions.get().expireSnapshots(iceTable).expireOlderThan(TimeUnit.DAYS.toMillis(7)).execute()

Data Lake 122
article thumbnail

Build a multi-Region and highly resilient modern data architecture using AWS Glue and AWS Lake Formation

AWS Big Data

Data migration must be performed separately using methods such as S3 replication , S3 sync, aws-s3-copy-sync-using-batch or S3 Batch replication. This utility has two modes for replicating Lake Formation and Data Catalog metadata: on-demand and real-time. Nivas Shankar is a Principal Product Manager for AWS Lake Formation.