Remove Big Data Remove Data Lake Remove Data Transformation
article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. Using Athena and the dbt adapter, you can transform raw data in Amazon S3 into well-structured tables suitable for analytics.

article thumbnail

Expanding data analysis and visualization options: Amazon DataZone now integrates with Tableau, Power BI, and more

AWS Big Data

Amazon DataZone now launched authentication supports through the Amazon Athena JDBC driver, allowing data users to seamlessly query their subscribed data lake assets via popular business intelligence (BI) and analytics tools like Tableau, Power BI, Excel, SQL Workbench, DBeaver, and more.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Monitor data pipelines in a serverless data lake

AWS Big Data

The combination of a data lake in a serverless paradigm brings significant cost and performance benefits. By monitoring application logs, you can gain insights into job execution, troubleshoot issues promptly to ensure the overall health and reliability of data pipelines.

article thumbnail

Orca Security’s journey to a petabyte-scale data lake with Apache Iceberg and AWS Analytics

AWS Big Data

With data becoming the driving force behind many industries today, having a modern data architecture is pivotal for organizations to be successful. In this post, we describe Orca’s journey building a transactional data lake using Amazon Simple Storage Service (Amazon S3), Apache Iceberg, and AWS Analytics.

article thumbnail

Amazon Q data integration adds DataFrame support and in-prompt context-aware job creation

AWS Big Data

The DataFrame code generation now extends beyond AWS Glue DynamicFrame to support a broader range of data processing scenarios. Your generated jobs can use a variety of data transformations, including filters, projections, unions, joins, and aggregations, giving you the flexibility to handle complex data processing requirements.

article thumbnail

Empower your Jira data in a data lake with Amazon AppFlow and AWS Glue

AWS Big Data

Although Jira Cloud provides reporting capability, loading this data into a data lake will facilitate enrichment with other business data, as well as support the use of business intelligence (BI) tools and artificial intelligence (AI) and machine learning (ML) applications. Search for the Jira Cloud connector.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

cycle_end"', "sagemakedatalakeenvironment_sub_db", ctas_approach=False) A similar approach is used to connect to shared data from Amazon Redshift, which is also shared using Amazon DataZone. With a unified catalog, enhanced analytics capabilities, and efficient data transformation processes, were laying the groundwork for future growth.

IoT 100