Remove Big Data Remove Data Lake Remove Online Analytical Processing
article thumbnail

How Aura from Unity revolutionized their big data pipeline with Amazon Redshift Serverless

AWS Big Data

Amazon Redshift is a recommended service for online analytical processing (OLAP) workloads such as cloud data warehouses, data marts, and other analytical data stores. Liat Tzur is a Senior Technical Account Manager at Amazon Web Services.

article thumbnail

Build an Amazon Redshift data warehouse using an Amazon DynamoDB single-table design

AWS Big Data

A key pillar of AWS’s modern data strategy is the use of purpose-built data stores for specific use cases to achieve performance, cost, and scale. Deriving business insights by identifying year-on-year sales growth is an example of an online analytical processing (OLAP) query.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Build a real-time analytics solution with Apache Pinot on AWS

AWS Big Data

Online Analytical Processing (OLAP) is crucial in modern data-driven apps, acting as an abstraction layer connecting raw data to users for efficient analysis. It organizes data into user-friendly structures, aligning with shared business definitions, ensuring users can analyze data with ease despite changes.

OLAP 110
article thumbnail

Unleashing the power of Presto: The Uber case study

IBM Big Data Hub

Uber understood that digital superiority required the capture of all their transactional data, not just a sampling. They stood up a file-based data lake alongside their analytical database. Uber chose Presto for the flexibility it provides with compute separated from data storage.

OLAP 86
article thumbnail

TIBCO JasperSoft for BI and Reporting

BizAcuity

TIBCO Jaspersoft offers a complete BI suite that includes reporting, online analytical processing (OLAP), visual analytics , and data integration. The web-scale platform enables users to share interactive dashboards and data from a single page with individuals across the enterprise. Data Security.

article thumbnail

How gaming companies can use Amazon Redshift Serverless to build scalable analytical applications faster and easier

AWS Big Data

A data hub contains data at multiple levels of granularity and is often not integrated. It differs from a data lake by offering data that is pre-validated and standardized, allowing for simpler consumption by users. Data hubs and data lakes can coexist in an organization, complementing each other.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

The data warehouse is highly business critical with minimal allowable downtime. We can determine the following are needed: An open data format ingestion architecture processing the source dataset and refining the data in the S3 data lake. Vijay Bagur is a Sr. Technical Account Manager.