Remove Big Data Remove Data Transformation Remove Metadata
article thumbnail

Enriching metadata for accurate text-to-SQL generation for Amazon Athena

AWS Big Data

Amazon Athena provides interactive analytics service for analyzing the data in Amazon Simple Storage Service (Amazon S3). Amazon Redshift is used to analyze structured and semi-structured data across data warehouses, operational databases, and data lakes. Table metadata is fetched from AWS Glue.

Metadata 102
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

An extract, transform, and load (ETL) process using AWS Glue is triggered once a day to extract the required data and transform it into the required format and quality, following the data product principle of data mesh architectures. Lakshmi Nair is a Senior Specialist Solutions Architect for Data Analytics at AWS.

IoT 110
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Introducing a new unified data connection experience with Amazon SageMaker Lakehouse unified data connectivity

AWS Big Data

With the ability to browse metadata, you can understand the structure and schema of the data source, identify relevant tables and fields, and discover useful data assets you may not be aware of. About the Authors Chiho Sugimoto is a Cloud Support Engineer on the AWS Big Data Support team.

article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

With quality data at their disposal, organizations can form data warehouses for the purposes of examining trends and establishing future-facing strategies. Industry-wide, the positive ROI on quality data is well understood. 2 – Data profiling. Data profiling is an essential process in the DQM lifecycle.

article thumbnail

Biggest Trends in Data Visualization Taking Shape in 2022

Smart Data Collective

There are countless examples of big data transforming many different industries. There is no disputing the fact that the collection and analysis of massive amounts of unstructured data has been a huge breakthrough. We would like to talk about data visualization and its role in the big data movement.

article thumbnail

Modernize your ETL platform with AWS Glue Studio: A case study from BMS

AWS Big Data

In addition to using native managed AWS services that BMS didn’t need to worry about upgrading, BMS was looking to offer an ETL service to non-technical business users that could visually compose data transformation workflows and seamlessly run them on the AWS Glue Apache Spark-based serverless data integration engine.

Metadata 110
article thumbnail

Modernize a legacy real-time analytics application with Amazon Managed Service for Apache Flink

AWS Big Data

Traditionally, such a legacy call center analytics platform would be built on a relational database that stores data from streaming sources. Data transformations through stored procedures and use of materialized views to curate datasets and generate insights is a known pattern with relational databases.