Remove Big Data Remove Data Transformation Remove Snapshot
article thumbnail

10 Examples of How Big Data in Logistics Can Transform The Supply Chain

datapine

Table of Contents 1) Benefits Of Big Data In Logistics 2) 10 Big Data In Logistics Use Cases Big data is revolutionizing many fields of business, and logistics analytics is no exception. The complex and ever-evolving nature of logistics makes it an essential use case for big data applications.

Big Data 275
article thumbnail

Orca Security’s journey to a petabyte-scale data lake with Apache Iceberg and AWS Analytics

AWS Big Data

The Orca Platform is powered by a state-of-the-art anomaly detection system that uses cutting-edge ML algorithms and big data capabilities to detect potential security threats and alert customers in real time, ensuring maximum security for their cloud environment. This ensures that the data is suitable for training purposes.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Perform upserts in a data lake using Amazon Athena and Apache Iceberg

AWS Big Data

It supports modern analytical data lake operations such as create table as select (CTAS), upsert and merge, and time travel queries. Athena also supports the ability to create views and perform VACUUM (snapshot expiration) on Apache Iceberg tables to optimize storage and performance.

article thumbnail

Enforce fine-grained access control on Open Table Formats via Amazon EMR integrated with AWS Lake Formation

AWS Big Data

The following are some highlighted steps: Run a snapshot query. %%sql You also can use transactional data lake features such as running snapshot queries, incremental queries, time travel, and DML query. He is deeply passionate about applying ML/DL and big data techniques to solve real-world problems.

Data Lake 107
article thumbnail

Build and manage your modern data stack using dbt and AWS Glue through dbt-glue, the new “trusted” dbt adapter

AWS Big Data

dbt is an open source, SQL-first templating engine that allows you to write repeatable and extensible data transforms in Python and SQL. dbt is predominantly used by data warehouses (such as Amazon Redshift ) customers who are looking to keep their data transform logic separate from storage and engine.

Data Lake 116
article thumbnail

Migrate Amazon Redshift from DC2 to RA3 to accommodate increasing data volumes and analytics demands

AWS Big Data

We carried out the migration as follows: We created a new cluster with eight ra3.4xlarge nodes from the snapshot of our four-node dc2.8xlarge cluster. TB of data. We turned off our internal ETL and ELT orchestrator, to prevent our data from being updated during the migration period.

Data Lake 106
article thumbnail

End-to-end development lifecycle for data engineers to build a data integration pipeline using AWS Glue

AWS Big Data

Every time the business requirement changes (such as adding data sources or changing data transformation logic), you make changes on the AWS Glue app stack and re-provision the stack to reflect your changes. About the author Noritaka Sekiyama is a Principal Big Data Architect on the AWS Glue team.