Remove Big Data Remove Data Warehouse Remove Metadata
article thumbnail

Data Warehouses: Basic Concepts for data enthusiasts

Analytics Vidhya

Introduction The purpose of a data warehouse is to combine multiple sources to generate different insights that help companies make better decisions and forecasting. It consists of historical and commutative data from single or multiple sources. Most data scientists, big data analysts, and business […].

article thumbnail

Enriching metadata for accurate text-to-SQL generation for Amazon Athena

AWS Big Data

Enterprise data is brought into data lakes and data warehouses to carry out analytical, reporting, and data science use cases using AWS analytical services like Amazon Athena , Amazon Redshift , Amazon EMR , and so on. Table metadata is fetched from AWS Glue. The generated Athena SQL query is run.

Metadata 102
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Expand data access through Apache Iceberg using Delta Lake UniForm on AWS

AWS Big Data

The landscape of big data management has been transformed by the rising popularity of open table formats such as Apache Iceberg, Apache Hudi, and Linux Foundation Delta Lake. These formats, designed to address the limitations of traditional data storage systems, have become essential in modern data architectures.

Metadata 121
article thumbnail

Understanding the Differences Between Data Lakes and Data Warehouses

Smart Data Collective

Data lakes and data warehouses are probably the two most widely used structures for storing data. Data Warehouses and Data Lakes in a Nutshell. A data warehouse is used as a central storage space for large amounts of structured data coming from various sources. Key Differences.

Data Lake 140
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

This post was co-written with Dipankar Mazumdar, Staff Data Engineering Advocate with AWS Partner OneHouse. Data architecture has evolved significantly to handle growing data volumes and diverse workloads. The synchronization process in XTable works by translating table metadata using the existing APIs of these table formats.

Metadata 105
article thumbnail

Write queries faster with Amazon Q generative SQL for Amazon Redshift

AWS Big Data

Amazon Redshift is a fully managed, AI-powered cloud data warehouse that delivers the best price-performance for your analytics workloads at any scale. It enables you to get insights faster without extensive knowledge of your organization’s complex database schema and metadata. Your data is not shared across accounts.

Metadata 105
article thumbnail

Accelerate SQL code migration from Google BigQuery to Amazon Redshift using BladeBridge

AWS Big Data

BladeBridge offers a comprehensive suite of tools that automate much of the complex conversion work, allowing organizations to quickly and reliably transition their data analytics capabilities to the scalable Amazon Redshift data warehouse. times better price performance than other cloud data warehouses.