This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The cloud is no longer synonymous with risk. There was a time when most CIOs would never consider putting their crown jewels — AKA customer data and associated analytics — into the cloud. But today, there is a magic quadrant for cloud databases and warehouses comprising more than 20 vendors.
We live in a world of data: there’s more of it than ever before, in a ceaselessly expanding array of forms and locations. Dealing with Data is your window into the ways Data Teams are tackling the challenges of this new world to help their companies and their customers thrive.
This blog is based upon webcast which can be watched here. Designing databases for datawarehouses or data marts is intrinsically much different than designing for traditional OLTP systems. Accordingly, data modelers must embrace some new tricks when designing datawarehouses and data marts.
This blog is based upon a recent webcast that can be viewed here. For NoSQL, data lakes, and data lake houses—data modeling of both structured and unstructured data is somewhat novel and thorny. Moreover, this blog will provide readers with a firm foundation for NoSQL and data lakes as they move to the cloud.
This blog is based upon a recent webcast that can be watched here. As with part 1 , part 2 ,and part 3 of this data modeling blog series, this blog also stresses that the cloud is not nirvana. Cloud database design choices. Below is a diagram showing your choices under the Amazon AWS cloud.
How to create a solid foundation for data modeling of OLTP systems. As you undertake a cloud database migration , a best practice is to perform data modeling as the foundation for well-designed OLTP databases. This makes mastering basic data modeling techniques and avoiding common pitfalls imperative.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content