Remove Blog Remove Data Architecture Remove Data Lake
article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights. Choose Next to create your stack.

Data Lake 122
article thumbnail

What is a Data Mesh?

DataKitchen

The data mesh design pattern breaks giant, monolithic enterprise data architectures into subsystems or domains, each managed by a dedicated team. First-generation – expensive, proprietary enterprise data warehouse and business intelligence platforms maintained by a specialized team drowning in technical debt.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Laying the Foundation for Modern Data Architecture

Cloudera

It’s not enough for businesses to implement and maintain a data architecture. The unpredictability of market shifts and the evolving use of new technologies means businesses need more data they can trust than ever to stay agile and make the right decisions.

article thumbnail

Query your Iceberg tables in data lake using Amazon Redshift (Preview)

AWS Big Data

Amazon Redshift enables you to directly access data stored in Amazon Simple Storage Service (Amazon S3) using SQL queries and join data across your data warehouse and data lake. With Amazon Redshift, you can query the data in your S3 data lake using a central AWS Glue metastore from your Redshift data warehouse.

Data Lake 119
article thumbnail

Data Minimization as Design Guideline for New Data Architectures

Data Virtualization

However, most of this data is not new or original, much of it is copied data. For example, data about a. The post Data Minimization as Design Guideline for New Data Architectures appeared first on Data Virtualization blog.

article thumbnail

The next generation of Amazon SageMaker: The center for all your data, analytics, and AI

AWS Big Data

Amazon SageMaker Lakehouse , now generally available, unifies all your data across Amazon Simple Storage Service (Amazon S3) data lakes and Amazon Redshift data warehouses, helping you build powerful analytics and AI/ML applications on a single copy of data. The tools to transform your business are here.

article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

While traditional extract, transform, and load (ETL) processes have long been a staple of data integration due to its flexibility, for common use cases such as replication and ingestion, they often prove time-consuming, complex, and less adaptable to the fast-changing demands of modern data architectures.