Remove Blog Remove Data Warehouse Remove Snapshot
article thumbnail

Open Data Lakehouse powered by Iceberg for all your Data Warehouse needs

Cloudera

In this blog, we will share with you in detail how Cloudera integrates core compute engines including Apache Hive and Apache Impala in Cloudera Data Warehouse with Iceberg. We will publish follow up blogs for other data services. Iceberg basics Iceberg is an open table format designed for large analytic workloads.

article thumbnail

Cloud Data Warehouse Migration 101: Expert Tips

Alation

It’s costly and time-consuming to manage on-premises data warehouses — and modern cloud data architectures can deliver business agility and innovation. However, CIOs declare that agility, innovation, security, adopting new capabilities, and time to value — never cost — are the top drivers for cloud data warehousing.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Materialized Views in Hive for Iceberg Table Format

Cloudera

Overview This blog post describes support for materialized views for the Iceberg table format. It brings the reliability and simplicity of SQL tables to big data while enabling engines like Hive, Impala, Spark, Trino, Flink, and Presto to work with the same tables at the same time. Starting from the CDW Public Cloud DWX-1.6.1

article thumbnail

How to Use Apache Iceberg in CDP’s Open Lakehouse

Cloudera

The general availability covers Iceberg running within some of the key data services in CDP, including Cloudera Data Warehouse ( CDW ), Cloudera Data Engineering ( CDE ), and Cloudera Machine Learning ( CML ). Cloudera Data Engineering (Spark 3) with Airflow enabled. Cloudera Machine Learning . group by year.

article thumbnail

Cloudera Lakehouse Optimizer Makes it Easier Than Ever to Deliver High-Performance Iceberg Tables

Cloudera

The open data lakehouse is quickly becoming the standard architecture for unified multifunction analytics on large volumes of data. It combines the flexibility and scalability of data lake storage with the data analytics, data governance, and data management functionality of the data warehouse.

article thumbnail

Use Apache Iceberg in a data lake to support incremental data processing

AWS Big Data

Whenever there is an update to the Iceberg table, a new snapshot of the table is created, and the metadata pointer points to the current table metadata file. At the top of the hierarchy is the metadata file, which stores information about the table’s schema, partition information, and snapshots. We use iceberg-blog-cluster.

Data Lake 124
article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

In this blog post, we dive into different data aspects and how Cloudinary breaks the two concerns of vendor locking and cost efficient data analytics by using Apache Iceberg, Amazon Simple Storage Service (Amazon S3 ), Amazon Athena , Amazon EMR , and AWS Glue. SparkActions.get().expireSnapshots(iceTable).expireOlderThan(TimeUnit.DAYS.toMillis(7)).execute()

Data Lake 119