Remove Book Remove Data Warehouse Remove Optimization
article thumbnail

Take Your SQL Skills To The Next Level With These Popular SQL Books

datapine

Business leaders, developers, data heads, and tech enthusiasts – it’s time to make some room on your business intelligence bookshelf because once again, datapine has new books for you to add. We have already given you our top data visualization books , top business intelligence books , and best data analytics books.

article thumbnail

Memory Optimizations for Analytic Queries in Cloudera Data Warehouse

Cloudera

You can read previous blog posts on Impala’s performance and querying techniques here – “ New Multithreading Model for Apache Impala ”, “ Keeping Small Queries Fast – Short query optimizations in Apache Impala ” and “ Faster Performance for Selective Queries ”. . You can also contact your sales representative to book a demo.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What is data architecture? A framework to manage data

CIO Business Intelligence

Beyond breaking down silos, modern data architectures need to provide interfaces that make it easy for users to consume data using tools fit for their jobs. Data must be able to freely move to and from data warehouses, data lakes, and data marts, and interfaces must make it easy for users to consume that data.

article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis. or a later version) database.

article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

Adapted from the book Effective Data Science Infrastructure. Data is at the core of any ML project, so data infrastructure is a foundational concern. ML use cases rarely dictate the master data management solution, so the ML stack needs to integrate with existing data warehouses. Model Operations.

IT 364
article thumbnail

Introducing generative AI upgrades for Apache Spark in AWS Glue (preview)

AWS Big Data

job reads a dataset, updated daily in an S3 bucket under different partitions, containing new book reviews from an online marketplace and runs SparkSQL to gather insights into the user votes for the book reviews. Understanding the upgrade process through an example We now show a production Glue 2.0 using the Spark Upgrade feature.

article thumbnail

How to Build a Performant Data Warehouse in Redshift

Sisense

This blog is intended to give an overview of the considerations you’ll want to make as you build your Redshift data warehouse to ensure you are getting the optimal performance. Amazon describes the dense storage nodes (DS2) as optimized for large data workloads and use hard disk drives (HDD) for storage.