This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In our modern digital world, proper use of data can play a huge role in a business’s success. Datasets are exploding at an ever-accelerating rate, so collecting and analyzing data to maximum effect is crucial. Understanding data structure is a key to unlocking its value. Structured vs unstructureddata.
New technologies, especially those driven by artificial intelligence (or AI), are changing how businessescollect and extract usable insights from data. Here are the six trends you should be aware of that will reshape business intelligence in 2020 and throughout the new decade. New Avenues of Data Discovery.
The goal is to define, implement and offer a data lifecycle platform enabling and optimizing future connected and autonomous vehicle systems that would train connected vehicle AI/ML models faster with higher accuracy and delivering a lower cost.
Data science is an area of expertise that combines many disciplines such as mathematics, computer science, software engineering and statistics. It focuses on datacollection and management of large-scale structured and unstructureddata for various academic and business applications.
Before going all-in with datacollection, cleaning, and analysis, it is important to consider the topics of security, privacy, and most importantly, compliance. Businesses deal with massive amounts of data from their users that can be sensitive and needs to be protected. Think of security, privacy, and compliance.
Yet with this surge in data, many organizations are either not able to draw insights from their data, or are not able to do so quickly enough. It is estimated that of all datacollected, less than 1% is actually analyzed and used. Your data is a gold mine and you’re barely scratching the surface of its value!
Data within a data fabric is defined using metadata and may be stored in a data lake, a low-cost storage environment that houses large stores of structured, semi-structured and unstructureddata for businessanalytics, machine learning and other broad applications.
The architecture may vary depending on the specific use case and requirements, but it typically includes stages of data ingestion, transformation, and storage. Data ingestion methods can include batch ingestion (collectingdata at scheduled intervals) or real-time streaming data ingestion (collectingdata continuously as it is generated).
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content