Remove Business Intelligence Remove Data Transformation Remove Data Warehouse
article thumbnail

7 key Microsoft Azure analytics services (plus one extra)

CIO Business Intelligence

The recent announcement of the Microsoft Intelligent Data Platform makes that more obvious, though analytics is only one part of that new brand. Azure Data Factory. Azure Data Lake Analytics. Data warehouses are designed for questions you already know you want to ask about your data, again and again.

Data Lake 116
article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

With quality data at their disposal, organizations can form data warehouses for the purposes of examining trends and establishing future-facing strategies. Industry-wide, the positive ROI on quality data is well understood. The program manager should lead the vision for quality data and ROI. date, month, and year).

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Create a modern data platform using the Data Build Tool (dbt) in the AWS Cloud

AWS Big Data

In this post, we delve into a case study for a retail use case, exploring how the Data Build Tool (dbt) was used effectively within an AWS environment to build a high-performing, efficient, and modern data platform. It does this by helping teams handle the T in ETL (extract, transform, and load) processes.

article thumbnail

Amazon Redshift data ingestion options

AWS Big Data

Federated queries are useful for use cases where organizations want to combine data from their operational systems with data stored in Amazon Redshift. Federated queries allow querying data across Amazon RDS for MySQL and PostgreSQL data sources without the need for extract, transform, and load (ETL) pipelines.

IoT 104
article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities.

article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis.

article thumbnail

How GamesKraft uses Amazon Redshift data sharing to support growing analytics workloads

AWS Big Data

Amazon Redshift is a fully managed data warehousing service that offers both provisioned and serverless options, making it more efficient to run and scale analytics without having to manage your data warehouse. These upstream data sources constitute the data producer components.