Remove Business Objectives Remove Data Lake Remove Data Transformation
article thumbnail

Migrate Amazon Redshift from DC2 to RA3 to accommodate increasing data volumes and analytics demands

AWS Big Data

With the ever-increasing volume of data available, Dafiti faces the challenge of effectively managing and extracting valuable insights from this vast pool of information to gain a competitive edge and make data-driven decisions that align with company business objectives. We started with 115 dc2.large

Data Lake 107
article thumbnail

Introducing a new unified data connection experience with Amazon SageMaker Lakehouse unified data connectivity

AWS Big Data

With the ability to browse metadata, you can understand the structure and schema of the data source, identify relevant tables and fields, and discover useful data assets you may not be aware of. About the Authors Chiho Sugimoto is a Cloud Support Engineer on the AWS Big Data Support team.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Mesh 101: How Data Mesh Helps Organizations Be Data-Driven and Achieve Velocity

Ontotext

This is especially beneficial when teams need to increase data product velocity with trust and data quality, reduce communication costs, and help data solutions align with business objectives. However, data mesh is not about introducing new technologies. by building data products with domain owners.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

However, you might face significant challenges when planning for a large-scale data warehouse migration. Additionally, organizations must carefully consider factors such as cost implications, security and compliance requirements, change management processes, and the potential disruption to existing business operations during the migration.

article thumbnail

Building Better Data Models to Unlock Next-Level Intelligence

Sisense

The reasons for this are simple: Before you can start analyzing data, huge datasets like data lakes must be modeled or transformed to be usable. According to a recent survey conducted by IDC , 43% of respondents were drawing intelligence from 10 to 30 data sources in 2020, with a jump to 64% in 2021!