Remove Business Objectives Remove Online Analytical Processing Remove Reporting
article thumbnail

Navigating Data Entities, BYOD, and Data Lakes in Microsoft Dynamics

Jet Global

Consultants and developers familiar with the AX data model could query the database using any number of different tools, including a myriad of different report writers. The SQL query language used to extract data for reporting could also potentially be used to insert, update, or delete records from the database.

article thumbnail

Build a real-time analytics solution with Apache Pinot on AWS

AWS Big Data

Online Analytical Processing (OLAP) is crucial in modern data-driven apps, acting as an abstraction layer connecting raw data to users for efficient analysis. It organizes data into user-friendly structures, aligning with shared business definitions, ensuring users can analyze data with ease despite changes.

OLAP 110
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Future of AI in the Enterprise

Jet Global

Enterprise businesses cannot survive without robust data warehousing—data silos can rapidly devour money and resources, and any business still trying to make sense and cobble together ‘business intelligence’ from multiple reports and inconsistent data is rapidly going to lose ground to those businesses with integrated data and reporting.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

The data warehouse is highly business critical with minimal allowable downtime. A successful migration can be accomplished through proactive planning, continuous monitoring, and performance fine-tuning, thereby aligning with and delivering on business objectives.

article thumbnail

How gaming companies can use Amazon Redshift Serverless to build scalable analytical applications faster and easier

AWS Big Data

Consumption This pillar consists of various consumption channels for enterprise analytical needs. It includes business intelligence (BI) users, canned and interactive reports, dashboards, data science workloads, Internet of Things (IoT), web apps, and third-party data consumers.

article thumbnail

The Future of AI in the Enterprise

Jet Global

Enterprise businesses cannot survive without robust data warehousing—data silos can rapidly devour money and resources, and any business still trying to make sense and cobble together ‘business intelligence’ from multiple reports and inconsistent data is rapidly going to lose ground to those businesses with integrated data and reporting.

article thumbnail

Deploy real-time analytics with StarTree for managed Apache Pinot on AWS

AWS Big Data

Amberdata, a blockchain and crypto market intelligence company, uses StarTree for real-time analytics to improve query performance, reduce SLA times, and lower infrastructure costs. Like Pinot, StarTree addresses the need for a low-latency, high-concurrency, real-time online analytical processing (OLAP) solution.