This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Consultants and developers familiar with the AX data model could query the database using any number of different tools, including a myriad of different report writers. The SQL query language used to extract data for reporting could also potentially be used to insert, update, or delete records from the database.
OnlineAnalyticalProcessing (OLAP) is crucial in modern data-driven apps, acting as an abstraction layer connecting raw data to users for efficient analysis. It organizes data into user-friendly structures, aligning with shared business definitions, ensuring users can analyze data with ease despite changes.
Enterprise businesses cannot survive without robust data warehousing—data silos can rapidly devour money and resources, and any business still trying to make sense and cobble together ‘business intelligence’ from multiple reports and inconsistent data is rapidly going to lose ground to those businesses with integrated data and reporting.
The data warehouse is highly business critical with minimal allowable downtime. A successful migration can be accomplished through proactive planning, continuous monitoring, and performance fine-tuning, thereby aligning with and delivering on businessobjectives.
Consumption This pillar consists of various consumption channels for enterprise analytical needs. It includes business intelligence (BI) users, canned and interactive reports, dashboards, data science workloads, Internet of Things (IoT), web apps, and third-party data consumers.
Enterprise businesses cannot survive without robust data warehousing—data silos can rapidly devour money and resources, and any business still trying to make sense and cobble together ‘business intelligence’ from multiple reports and inconsistent data is rapidly going to lose ground to those businesses with integrated data and reporting.
Amberdata, a blockchain and crypto market intelligence company, uses StarTree for real-time analytics to improve query performance, reduce SLA times, and lower infrastructure costs. Like Pinot, StarTree addresses the need for a low-latency, high-concurrency, real-time onlineanalyticalprocessing (OLAP) solution.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content