Remove Consulting Remove Knowledge Discovery Remove Metadata
article thumbnail

On the Hunt for Patterns: from Hippocrates to Supercomputers

Ontotext

These are the so-called supercomputers, led by a smart legion of researchers and practitioners in the fields of data-driven knowledge discovery. Again, the overall aim is to extract knowledge from data and, through algorithms based on artificial intelligence, to assist medical professionals in routine diagnostics processes.

article thumbnail

From Data Silos to Data Fabric with Knowledge Graphs

Ontotext

This means the creation of reusable data services, machine-readable semantic metadata and APIs that ensure the integration and orchestration of data across the organization and with third-party external data. Knowledge Graphs are the Warp and Weft of a Data Fabric. This provides a solid foundation for efficient data integration.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

KGF 2023: Bikes To The Moon, Datastrophies, Abstract Art And A Knowledge Graph Forum To Embrace Them All

Ontotext

Atanas Kiryakov presenting at KGF 2023 about Where Shall and Enterprise Start their Knowledge Graph Journey Only data integration through semantic metadata can drive business efficiency as “it’s the glue that turns knowledge graphs into hubs of metadata and content”.

article thumbnail

Top Graph Use Cases and Enterprise Applications (with Real World Examples)

Ontotext

Graphs boost knowledge discovery and efficient data-driven analytics to understand a company’s relationship with customers and personalize marketing, products, and services. million users. What shipping route is the most fuel efficient? Linked Data, subscriptions, purchased datasets, etc.).

article thumbnail

Knowledge Graphs 101: The Story (and Benefits) Behind the Hype

Ontotext

Knowledge graphs, while not as well-known as other data management offerings, are a proven dynamic and scalable solution for addressing enterprise data management requirements across several verticals. As a hub for data, metadata, and content, they provide a unified, consistent, and unambiguous view of data scattered across different systems.