This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
With Cloudera, OCBC’s Next Best Conversation platform was able to analyze real-time contextualdata from customer conversations, resulting in a revenue increase. While these are great proof points to demonstrate how business value can be driven by AI/ML, this was only made possible with trusted data.
Cloudera’s true hybrid approach ensures you can leverage any deployment, from virtual private cloud to on-premises data centers, to maximize the use of AI. Reliability – Can you trust that your data quality will yield useful AI results? Responsibility – Can you trust your AI models will give meaningful insight?
Here are some of the key use cases: Predictive maintenance: With time series data (sensor data) coming from the equipment, historical maintenance logs, and other contextualdata, you can predict how the equipment will behave and when the equipment or a component will fail. Eliminate data silos.
How effectively and efficiently an organization can conduct data analytics is determined by its data strategy and dataarchitecture , which allows an organization, its users and its applications to access different types of data regardless of where that data resides.
The implications of consumer behavior for retailers range from the need to ensure relevant customer service and quick delivery to serving personalized content and managing data from disparate systems. Of course, there are various platforms and dataarchitectures for managing customer and product data.
Democratized stream processing is the ability of non-coder domain experts to apply transformations, rules, or business logic to streaming data to identify complex events in real time and trigger automated workflows and/or deliver decision-ready data to users.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content