This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The second layer, Data Hub, can ingest data from a variety of sources including on-farm devices, drones, IoT devices and satellites. Agriculture businesses and farmers can use the hub to access structured and contextualizeddata from various sources for correlation and analysis at scale, the company said.
Facing a constant onslaught of cost pressures, supply chain volatility and disruptive technologies like 3D printing and IoT. Contextualdata understanding Data systems often cause major problems in manufacturing firms. The manufacturing industry is in an unenviable position.
Last week Cloudera introduced an open end-to-end architecture for IoT and the different components needed to help satisfy today’s enterprise needs regarding operational technology (OT), information technology (IT), data analytics and machine learning (ML), along with modern and traditional application development, deployment, and integration.
Here are some of the key use cases: Predictive maintenance: With time series data (sensor data) coming from the equipment, historical maintenance logs, and other contextualdata, you can predict how the equipment will behave and when the equipment or a component will fail. Eliminate data silos.
The emergence of IoT, cloud computing, and big data analytics combined with AI tech has brought enterprises to a tipping point in their journey towards making AI real. View All Recognitions. AI For Digital Enterprises – Thought Leadership. Back to News Page. www.BRIDGEi2i.com.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content