Remove Cost-Benefit Remove Data-driven Remove Knowledge Discovery
article thumbnail

Enrich your serverless data lake with Amazon Bedrock

AWS Big Data

Organizations are collecting and storing vast amounts of structured and unstructured data like reports, whitepapers, and research documents. By consolidating this information, analysts can discover and integrate data from across the organization, creating valuable data products based on a unified dataset.

Data Lake 101
article thumbnail

Bridging the Gap Between Industries: The Power of Knowledge Graphs – Part I

Ontotext

Knowledge graphs are changing the game A knowledge graph is a data model that uses semantics to represent real-world entities and the relationships between them. It can apply automated reasoning to extract further knowledge and make new connections between different pieces of data. Manufacturing and Industry 4.0

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

KGF 2023: Bikes To The Moon, Datastrophies, Abstract Art And A Knowledge Graph Forum To Embrace Them All

Ontotext

It enriched their understanding of the full spectrum of knowledge graph business applications and the technology partner ecosystem needed to turn data into a competitive advantage. Content and data management solutions based on knowledge graphs are becoming increasingly important across enterprises.

article thumbnail

Accelerating model velocity through Snowflake Java UDF integration

Domino Data Lab

Over the next decade, the companies that will beat competitors will be “model-driven” businesses. These companies often undertake large data science efforts in order to shift from “data-driven” to “model-driven” operations, and to provide model-underpinned insights to the business. Why Snowflake UDFs.

article thumbnail

Top Graph Use Cases and Enterprise Applications (with Real World Examples)

Ontotext

Gartner predicts that graph technologies will be used in 80% of data and analytics innovations by 2025, up from 10% in 2021. Several factors are driving the adoption of knowledge graphs. Use Case #1: Customer 360 / Enterprise 360 Customer data is typically spread across multiple applications, departments, and regions.

article thumbnail

Enhancing Knowledge Discovery: Implementing Retrieval Augmented Generation with Ontotext Technologies

Ontotext

This is part of Ontotext’s AI-in-Action initiative aimed at enabling data scientists and engineers to benefit from the AI capabilities of our products. Natural Language Query (NLQ) has gained immense popularity due to its ability to empower non-technical individuals to extract data insights just by asking questions in plain language.

article thumbnail

Considerations to Creating a Graph Center of Excellence: 5 Elements to Ensure Success

Ontotext

There is a confluence of activity—including generative AI models, digital twins, and shared ledger capabilities—that are having a profound impact on helping enterprises meet their goal of becoming data driven. But until they connect the dots across their data, they will never be able to truly leverage their information assets.