Remove Cost-Benefit Remove Data Lake Remove Data Transformation
article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. Using Athena and the dbt adapter, you can transform raw data in Amazon S3 into well-structured tables suitable for analytics.

article thumbnail

Bridging the gap between mainframe data and hybrid cloud environments

CIO Business Intelligence

In order to make the most of critical mainframe data, organizations must build a link between mainframe data and hybrid cloud infrastructure. Bringing mainframe data to the cloud Mainframe data has a slew of benefits including analytical advantages, which lead to operational efficiencies and greater productivity.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Monitor data pipelines in a serverless data lake

AWS Big Data

The combination of a data lake in a serverless paradigm brings significant cost and performance benefits. By monitoring application logs, you can gain insights into job execution, troubleshoot issues promptly to ensure the overall health and reliability of data pipelines.

article thumbnail

Data transformation takes flight at Atlanta’s Hartsfield-Jackson airport

CIO Business Intelligence

The original proof of concept was to have one data repository ingesting data from 11 sources, including flat files and data stored via APIs on premises and in the cloud, Pruitt says. There are a lot of variables that determine what should go into the data lake and what will probably stay on premise,” Pruitt says.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

cycle_end"', "sagemakedatalakeenvironment_sub_db", ctas_approach=False) A similar approach is used to connect to shared data from Amazon Redshift, which is also shared using Amazon DataZone. The consumer subscribes to the data product from Amazon DataZone and consumes the data with their own Amazon Redshift instance.

IoT 100
article thumbnail

Empower your Jira data in a data lake with Amazon AppFlow and AWS Glue

AWS Big Data

Although Jira Cloud provides reporting capability, loading this data into a data lake will facilitate enrichment with other business data, as well as support the use of business intelligence (BI) tools and artificial intelligence (AI) and machine learning (ML) applications. Search for the Jira Cloud connector.

article thumbnail

How to modernize data lakes with a data lakehouse architecture

IBM Big Data Hub

Data Lakes have been around for well over a decade now, supporting the analytic operations of some of the largest world corporations. Such data volumes are not easy to move, migrate or modernize. The challenges of a monolithic data lake architecture Data lakes are, at a high level, single repositories of data at scale.