Remove Cost-Benefit Remove Data Warehouse Remove Snapshot
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

This post was co-written with Dipankar Mazumdar, Staff Data Engineering Advocate with AWS Partner OneHouse. Data architecture has evolved significantly to handle growing data volumes and diverse workloads. Moreover, they can be combined to benefit from individual strengths.

Metadata 105
article thumbnail

Open Data Lakehouse powered by Iceberg for all your Data Warehouse needs

Cloudera

In this blog, we will share with you in detail how Cloudera integrates core compute engines including Apache Hive and Apache Impala in Cloudera Data Warehouse with Iceberg. We will publish follow up blogs for other data services. Iceberg basics Iceberg is an open table format designed for large analytic workloads.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Build an Amazon Redshift data warehouse using an Amazon DynamoDB single-table design

AWS Big Data

In traditional databases, we would model such applications using a normalized data model (entity-relation diagram). A key pillar of AWS’s modern data strategy is the use of purpose-built data stores for specific use cases to achieve performance, cost, and scale. These types of queries are suited for a data warehouse.

article thumbnail

Cloud Data Warehouse Migration 101: Expert Tips

Alation

It’s costly and time-consuming to manage on-premises data warehouses — and modern cloud data architectures can deliver business agility and innovation. However, CIOs declare that agility, innovation, security, adopting new capabilities, and time to value — never cost — are the top drivers for cloud data warehousing.

article thumbnail

How Gupshup built their multi-tenant messaging analytics platform on Amazon Redshift

AWS Big Data

About Redshift and some relevant features for the use case Amazon Redshift is a fully managed, petabyte-scale, massively parallel data warehouse that offers simple operations and high performance. It makes it fast, simple, and cost-effective to analyze all your data using standard SQL and your existing business intelligence (BI) tools.

Analytics 119
article thumbnail

Power enterprise-grade Data Vaults with Amazon Redshift – Part 2

AWS Big Data

Amazon Redshift is a popular cloud data warehouse, offering a fully managed cloud-based service that seamlessly integrates with an organization’s Amazon Simple Storage Service (Amazon S3) data lake, real-time streams, machine learning (ML) workflows, transactional workflows, and much more—all while providing up to 7.9x

article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

In this blog post, we dive into different data aspects and how Cloudinary breaks the two concerns of vendor locking and cost efficient data analytics by using Apache Iceberg, Amazon Simple Storage Service (Amazon S3 ), Amazon Athena , Amazon EMR , and AWS Glue. withRegion("us-east-1").build() withQueueUrl(queueUrl).withMaxNumberOfMessages(10)).getMessages.asScala

Data Lake 126