Remove Cost-Benefit Remove Enterprise Remove Optimization
article thumbnail

Unlocking the full potential of enterprise AI

CIO Business Intelligence

Research from Gartner, for example, shows that approximately 30% of generative AI (GenAI) will not make it past the proof-of-concept phase by the end of 2025, due to factors including poor data quality, inadequate risk controls, and escalating costs. [1] AI in action The benefits of this approach are clear to see.

article thumbnail

The key to operational AI: Modern data architecture

CIO Business Intelligence

From customer service chatbots to marketing teams analyzing call center data, the majority of enterprises—about 90% according to recent data —have begun exploring AI. Today, enterprises are leveraging various types of AI to achieve their goals. This is where Operational AI comes into play.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Generative AI in the Enterprise

O'Reilly on Data

In enterprises, we’ve seen everything from wholesale adoption to policies that severely restrict or even forbid the use of generative AI. 54% of AI users expect AI’s biggest benefit will be greater productivity. That pricing won’t be sustainable, particularly as hardware shortages drive up the cost of building infrastructure.

article thumbnail

Where CIOs should place their 2025 AI bets

CIO Business Intelligence

We may look back at 2024 as the year when LLMs became mainstream, every enterprise SaaS added copilot or virtual assistant capabilities, and many organizations got their first taste of agentic AI. CIOs were given significant budgets to improve productivity, cost savings, and competitive advantages with gen AI.

article thumbnail

LLMOps for Your Data: Best Practices to Ensure Safety, Quality, and Cost

Speaker: Shreya Rajpal, Co-Founder and CEO at Guardrails AI & Travis Addair, Co-Founder and CTO at Predibase

Large Language Models (LLMs) such as ChatGPT offer unprecedented potential for complex enterprise applications. However, productionizing LLMs comes with a unique set of challenges such as model brittleness, total cost of ownership, data governance and privacy, and the need for consistent, accurate outputs.

article thumbnail

Infor’s Velocity Summit Highlights Multiple Advances and Enhancements

David Menninger's Analyst Perspectives

Also center stage were Infor’s advances in artificial intelligence and process mining as well as its environmental, social and governance application and supply chain optimization enhancements. The company provides industry-specific enterprise software that enhances business performance and operational efficiency.

Finance 130
article thumbnail

7 types of tech debt that could cripple your business

CIO Business Intelligence

CIOs perennially deal with technical debts risks, costs, and complexities. Accenture reports that the top three sources of technical debt are enterprise applications, AI, and enterprise architecture. Forrester reports that 30% of IT leaders struggle with high or critical debt, while 49% more face moderate levels.

Risk 123