Remove Dashboards Remove Data Architecture Remove Data Lake
article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights. They are the same.

Data Lake 122
article thumbnail

Eight Top DataOps Trends for 2022

DataKitchen

Data Gets Meshier. 2022 will bring further momentum behind modular enterprise architectures like data mesh. The data mesh addresses the problems characteristic of large, complex, monolithic data architectures by dividing the system into discrete domains managed by smaller, cross-functional teams.

Testing 245
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Need for a data mesh architecture Because entities in the EUROGATE group generate vast amounts of data from various sourcesacross departments, locations, and technologiesthe traditional centralized data architecture struggles to keep up with the demands for real-time insights, agility, and scalability.

IoT 111
article thumbnail

Centralize Your Data Processes With a DataOps Process Hub

DataKitchen

Data organizations often have a mix of centralized and decentralized activity. DataOps concerns itself with the complex flow of data across teams, data centers and organizational boundaries. It expands beyond tools and data architecture and views the data organization from the perspective of its processes and workflows.

article thumbnail

Cloudera and Snowflake Partner to Deliver the Most Comprehensive Open Data Lakehouse

Cloudera

In August, we wrote about how in a future where distributed data architectures are inevitable, unifying and managing operational and business metadata is critical to successfully maximizing the value of data, analytics, and AI.

article thumbnail

DataOps For Business Analytics Teams

DataKitchen

Data scientists derive insights from data while business analysts work closely with and tend to the data needs of business units. Business analysts sometimes perform data science, but usually, they integrate and visualize data and create reports and dashboards from data supplied by other groups.

article thumbnail

Petabyte-scale log analytics with Amazon S3, Amazon OpenSearch Service, and Amazon OpenSearch Ingestion

AWS Big Data

At the same time, they need to optimize operational costs to unlock the value of this data for timely insights and do so with a consistent performance. With this massive data growth, data proliferation across your data stores, data warehouse, and data lakes can become equally challenging.

Data Lake 131