Remove Dashboards Remove Data Lake Remove Metadata
article thumbnail

Recap of Amazon Redshift key product announcements in 2024

AWS Big Data

Today, Amazon Redshift is used by customers across all industries for a variety of use cases, including data warehouse migration and modernization, near real-time analytics, self-service analytics, data lake analytics, machine learning (ML), and data monetization.

article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

In the era of big data, data lakes have emerged as a cornerstone for storing vast amounts of raw data in its native format. They support structured, semi-structured, and unstructured data, offering a flexible and scalable environment for data ingestion from multiple sources.

Metadata 126
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How BMW streamlined data access using AWS Lake Formation fine-grained access control

AWS Big Data

To achieve this, they aimed to break down data silos and centralize data from various business units and countries into the BMW Cloud Data Hub (CDH). This led to inefficiencies in data governance and access control.

Data Lake 108
article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights.

Data Lake 122
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

In the following section, two use cases demonstrate how the data mesh is established with Amazon DataZone to better facilitate machine learning for an IoT-based digital twin and BI dashboards and reporting using Tableau. From here, the metadata is published to Amazon DataZone by using AWS Glue Data Catalog.

IoT 111
article thumbnail

Use Apache Iceberg in a data lake to support incremental data processing

AWS Big Data

Apache Iceberg is an open table format for very large analytic datasets, which captures metadata information on the state of datasets as they evolve and change over time. Iceberg has become very popular for its support for ACID transactions in data lakes and features like schema and partition evolution, time travel, and rollback.

Data Lake 137
article thumbnail

Data Lakes on Cloud & it’s Usage in Healthcare

BizAcuity

Data lakes are centralized repositories that can store all structured and unstructured data at any desired scale. The power of the data lake lies in the fact that it often is a cost-effective way to store data. The power of the data lake lies in the fact that it often is a cost-effective way to store data.

Data Lake 102