Remove Data Analytics Remove Data Architecture Remove Data Lake Remove Data Warehouse
article thumbnail

Modernize your legacy databases with AWS data lakes, Part 3: Build a data lake processing layer

AWS Big Data

This is the final part of a three-part series where we show how to build a data lake on AWS using a modern data architecture. This post shows how to process data with Amazon Redshift Spectrum and create the gold (consumption) layer. The following diagram illustrates the different layers of the data lake.

article thumbnail

Accelerate Amazon Redshift Data Lake queries with AWS Glue Data Catalog Column Statistics

AWS Big Data

Amazon Redshift enables you to efficiently query and retrieve structured and semi-structured data from open format files in Amazon S3 data lake without having to load the data into Amazon Redshift tables. Amazon Redshift extends SQL capabilities to your data lake, enabling you to run analytical queries.

Data Lake 104
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Design a data mesh pattern for Amazon EMR-based data lakes using AWS Lake Formation with Hive metastore federation

AWS Big Data

One of the key challenges in modern big data management is facilitating efficient data sharing and access control across multiple EMR clusters. Organizations have multiple Hive data warehouses across EMR clusters, where the metadata gets generated. Test access using SageMaker Studio in the consumer account.

article thumbnail

Data architecture strategy for data quality

IBM Big Data Hub

Several factors determine the quality of your enterprise data like accuracy, completeness, consistency, to name a few. But there’s another factor of data quality that doesn’t get the recognition it deserves: your data architecture. How the right data architecture improves data quality.

article thumbnail

What is a Data Mesh?

DataKitchen

The data mesh design pattern breaks giant, monolithic enterprise data architectures into subsystems or domains, each managed by a dedicated team. First-generation – expensive, proprietary enterprise data warehouse and business intelligence platforms maintained by a specialized team drowning in technical debt.

article thumbnail

Modernizing Data Analytics Architecture with the Denodo Platform on Azure

Data Virtualization

Reading Time: 2 minutes Today, many businesses are modernizing their on-premises data warehouses or cloud-based data lakes using Microsoft Azure Synapse Analytics. Unfortunately, with data spread.

article thumbnail

Data science vs data analytics: Unpacking the differences

IBM Big Data Hub

Though you may encounter the terms “data science” and “data analytics” being used interchangeably in conversations or online, they refer to two distinctly different concepts. Meanwhile, data analytics is the act of examining datasets to extract value and find answers to specific questions.