Remove Data Analytics Remove Data Lake Remove IT
article thumbnail

Modernize your legacy databases with AWS data lakes, Part 2: Build a data lake using AWS DMS data on Apache Iceberg

AWS Big Data

This is part two of a three-part series where we show how to build a data lake on AWS using a modern data architecture. This post shows how to load data from a legacy database (SQL Server) into a transactional data lake ( Apache Iceberg ) using AWS Glue. To start the job, choose Run. format(dbname)).config("spark.sql.catalog.glue_catalog.catalog-impl",

Data Lake 104
article thumbnail

Incremental refresh for Amazon Redshift materialized views on data lake tables

AWS Big Data

Amazon Redshift is a fast, fully managed cloud data warehouse that makes it cost-effective to analyze your data using standard SQL and business intelligence tools. However, it also offers additional optimizations that you can use to further improve this performance and achieve even faster query response times from your data warehouse.

Data Lake 102
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Better together? Why AWS is unifying data analytics and AI services in SageMaker

CIO Business Intelligence

Data warehousing, business intelligence, data analytics, and AI services are all coming together under one roof at Amazon Web Services. It combines SQL analytics, data processing, AI development, data streaming, business intelligence, and search analytics.

article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

At AWS, we are committed to empowering organizations with tools that streamline data analytics and transformation processes. This integration enables data teams to efficiently transform and manage data using Athena with dbt Cloud’s robust features, enhancing the overall data workflow experience.

article thumbnail

Data Analytics in the Cloud for Developers and Founders

Speaker: Javier Ramírez, Senior AWS Developer Advocate, AWS

You have lots of data, and you are probably thinking of using the cloud to analyze it. But how will you move data into the cloud? How will you validate and prepare the data? What about streaming data? Can data scientists discover and use the data? Will the data lake scale when you have twice as much data?

article thumbnail

The next generation of Amazon SageMaker: The center for all your data, analytics, and AI

AWS Big Data

This week on the keynote stages at AWS re:Invent 2024, you heard from Matt Garman, CEO, AWS, and Swami Sivasubramanian, VP of AI and Data, AWS, speak about the next generation of Amazon SageMaker , the center for all of your data, analytics, and AI. The relationship between analytics and AI is rapidly evolving.

article thumbnail

Differentiating Between Data Lakes and Data Warehouses

Smart Data Collective

While there is a lot of discussion about the merits of data warehouses, not enough discussion centers around data lakes. We talked about enterprise data warehouses in the past, so let’s contrast them with data lakes. Both data warehouses and data lakes are used when storing big data.

Data Lake 135