Remove Data Analytics Remove Data Processing Remove Data Warehouse
article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis.

article thumbnail

Migrate a petabyte-scale data warehouse from Actian Vectorwise to Amazon Redshift

AWS Big Data

Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structured data. The system had an integration with legacy backend services that were all hosted on premises.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The future of data: A 5-pillar approach to modern data management

CIO Business Intelligence

Manish Limaye Pillar #1: Data platform The data platform pillar comprises tools, frameworks and processing and hosting technologies that enable an organization to process large volumes of data, both in batch and streaming modes. The choice of vendors should align with the broader cloud or on-premises strategy.

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

DataOps needs a directed graph-based workflow that contains all the data access, integration, model and visualization steps in the data analytic production process. It orchestrates complex pipelines, toolchains, and tests across teams, locations, and data centers. Amaterasu — is a deployment tool for data pipelines.

Testing 304
article thumbnail

Amazon Q data integration adds DataFrame support and in-prompt context-aware job creation

AWS Big Data

You can now generate data integration jobs for various data sources and destinations, including Amazon Simple Storage Service (Amazon S3) data lakes with popular file formats like CSV, JSON, and Parquet, as well as modern table formats such as Apache Hudi , Delta , and Apache Iceberg.

article thumbnail

Take Your SQL Skills To The Next Level With These Popular SQL Books

datapine

Business leaders, developers, data heads, and tech enthusiasts – it’s time to make some room on your business intelligence bookshelf because once again, datapine has new books for you to add. We have already given you our top data visualization books , top business intelligence books , and best data analytics books.

article thumbnail

Scaling RISE with SAP data and AWS Glue

AWS Big Data

Customers often want to augment and enrich SAP source data with other non-SAP source data. Such analytic use cases can be enabled by building a data warehouse or data lake. Customers can now use the AWS Glue SAP OData connector to extract data from SAP.