Remove Data Analytics Remove Data Transformation Remove Data Warehouse
article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

At AWS, we are committed to empowering organizations with tools that streamline data analytics and transformation processes. This integration enables data teams to efficiently transform and manage data using Athena with dbt Cloud’s robust features, enhancing the overall data workflow experience.

Data Lake 100
article thumbnail

Migrate from Amazon Kinesis Data Analytics for SQL Applications to Amazon Kinesis Data Analytics Studio

AWS Big Data

Amazon Kinesis Data Analytics makes it easy to transform and analyze streaming data in real time. In this post, we discuss why AWS recommends moving from Kinesis Data Analytics for SQL Applications to Amazon Kinesis Data Analytics for Apache Flink to take advantage of Apache Flink’s advanced streaming capabilities.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis.

article thumbnail

7 key Microsoft Azure analytics services (plus one extra)

CIO Business Intelligence

And as businesses contend with increasingly large amounts of data, the cloud is fast becoming the logical place where analytics work gets done. For many enterprises, Microsoft Azure has become a central hub for analytics. Azure Data Factory. Azure Data Explorer. Azure Data Lake Analytics.

Data Lake 116
article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities. This makes sure the new data platform can meet current and future business goals.

article thumbnail

Accelerate your data workflows with Amazon Redshift Data API persistent sessions

AWS Big Data

Amazon Redshift is a fast, scalable, secure, and fully managed cloud data warehouse that you can use to analyze your data at scale. Anusha Challa is a Senior Analytics Specialist Solutions Architect focused on Amazon Redshift. She is passionate about data analytics and data science.

article thumbnail

Create a modern data platform using the Data Build Tool (dbt) in the AWS Cloud

AWS Big Data

It does this by helping teams handle the T in ETL (extract, transform, and load) processes. It allows users to write data transformation code, run it, and test the output, all within the framework it provides. dbt emerged as the perfect choice for this transformation within their existing AWS environment.