Remove Data Analytics Remove Data Warehouse Remove Snapshot
article thumbnail

Building end-to-end data lineage for one-time and complex queries using Amazon Athena, Amazon Redshift, Amazon Neptune and dbt

AWS Big Data

One-time and complex queries are two common scenarios in enterprise data analytics. Complex queries, on the other hand, refer to large-scale data processing and in-depth analysis based on petabyte-level data warehouses in massive data scenarios. Here, data modeling uses dbt on Amazon Redshift.

article thumbnail

Implement data warehousing solution using dbt on Amazon Redshift

AWS Big Data

Snapshots – These implements type-2 slowly changing dimensions (SCDs) over mutable source tables. Seeds – These are CSV files in your dbt project (typically in your seeds directory), which dbt can load into your data warehouse using the dbt seed command. project-dir. -- Run all the snapshot files dbt snapshot --profiles-dir.

Snapshot 104
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

In this blog post, we dive into different data aspects and how Cloudinary breaks the two concerns of vendor locking and cost efficient data analytics by using Apache Iceberg, Amazon Simple Storage Service (Amazon S3 ), Amazon Athena , Amazon EMR , and AWS Glue. SparkActions.get().expireSnapshots(iceTable).expireOlderThan(TimeUnit.DAYS.toMillis(7)).execute()

Data Lake 122
article thumbnail

Achieve near real time operational analytics using Amazon Aurora PostgreSQL zero-ETL integration with Amazon Redshift

AWS Big Data

and zero-ETL support) as the source, and a Redshift data warehouse as the target. The integration replicates data from the source database into the target data warehouse. Additionally, you can choose the capacity, to limit the compute resources of the data warehouse. For this post, set this to 8 RPUs.

article thumbnail

Migrate Amazon Redshift from DC2 to RA3 to accommodate increasing data volumes and analytics demands

AWS Big Data

With the ever-increasing volume of data available, Dafiti faces the challenge of effectively managing and extracting valuable insights from this vast pool of information to gain a competitive edge and make data-driven decisions that align with company business objectives. TB of data. We started with 115 dc2.large

Data Lake 107
article thumbnail

Use Amazon Athena with Spark SQL for your open-source transactional table formats

AWS Big Data

These formats enable ACID (atomicity, consistency, isolation, durability) transactions, upserts, and deletes, and advanced features such as time travel and snapshots that were previously only available in data warehouses. It will never remove files that are still required by a non-expired snapshot.

Snapshot 115
article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

With this new functionality, customers can create up-to-date replicas of their data from applications such as Salesforce, ServiceNow, and Zendesk in an Amazon SageMaker Lakehouse and Amazon Redshift. SageMaker Lakehouse gives you the flexibility to access and query your data in-place with all Apache Iceberg compatible tools and engines.