Remove Data Analytics Remove Metadata Remove Unstructured Data
article thumbnail

Unstructured data management and governance using AWS AI/ML and analytics services

AWS Big Data

Unstructured data is information that doesn’t conform to a predefined schema or isn’t organized according to a preset data model. Unstructured information may have a little or a lot of structure but in ways that are unexpected or inconsistent. Text, images, audio, and videos are common examples of unstructured data.

article thumbnail

What is a data scientist? A key data analytics role and a lucrative career

CIO Business Intelligence

Data scientists are analytical data experts who use data science to discover insights from massive amounts of structured and unstructured data to help shape or meet specific business needs and goals. Learn from data scientists about their responsibilities and find out how to launch a data science career. |

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Top analytics announcements of AWS re:Invent 2024

AWS Big Data

In this post, we walk you through the top analytics announcements from re:Invent 2024 and explore how these innovations can help you unlock the full potential of your data. S3 Metadata is designed to automatically capture metadata from objects as they are uploaded into a bucket, and to make that metadata queryable in a read-only table.

article thumbnail

Building a Beautiful Data Lakehouse

CIO Business Intelligence

Applying artificial intelligence (AI) to data analytics for deeper, better insights and automation is a growing enterprise IT priority. But the data repository options that have been around for a while tend to fall short in their ability to serve as the foundation for big data analytics powered by AI.

Data Lake 119
article thumbnail

Data governance in the age of generative AI

AWS Big Data

Data governance is a critical building block across all these approaches, and we see two emerging areas of focus. First, many LLM use cases rely on enterprise knowledge that needs to be drawn from unstructured data such as documents, transcripts, and images, in addition to structured data from data warehouses.

article thumbnail

A Few Proven Suggestions for Handling Large Data Sets

Smart Data Collective

Data mining and knowledge go hand in hand, providing insightful information to create applications that can make predictions, identify patterns, and, last but not least, facilitate decision-making. Working with massive structured and unstructured data sets can turn out to be complicated. It’s a good idea to record metadata.

Metadata 130
article thumbnail

AI’s data tsunami: Why your data stewardship needs an overhaul

CIO Business Intelligence

They can tell if your customer lifetime value model is about to treat a whale like a minnow because of a data discrepancy. They can at least clarify how and what data supported AI to reach its conclusions. For information on how EXL can help with your data stewardship needs, visit our website.