Remove Data Architecture Remove Data Collection Remove Metadata
article thumbnail

Breaking State and Local Data Silos with Modern Data Architectures

Cloudera

Modern data architectures. To eliminate or integrate these silos, the public sector needs to adopt robust data management solutions that support modern data architectures (MDAs). Solutions that support MDAs are purpose-built for data collection, processing, and sharing.

article thumbnail

The Struggle Between Data Dark Ages and LLM Accuracy

Cloudera

The AI Forecast: Data and AI in the Cloud Era , sponsored by Cloudera, aims to take an objective look at the impact of AI on business, industry, and the world at large. AI is only as successful as the data behind it. It could be metadata that you weren’t capturing before. That’s context, that’s location.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What is data governance? Best practices for managing data assets

CIO Business Intelligence

The program must introduce and support standardization of enterprise data. Programs must support proactive and reactive change management activities for reference data values and the structure/use of master data and metadata.

article thumbnail

Create an end-to-end data strategy for Customer 360 on AWS

AWS Big Data

In this post, we discuss how you can use purpose-built AWS services to create an end-to-end data strategy for C360 to unify and govern customer data that address these challenges. We recommend building your data strategy around five pillars of C360, as shown in the following figure.

article thumbnail

Enterprise Data Management — Driving Large-Scale Change in Your Organization

Sisense

First off, this involves defining workflows for every business process within the enterprise: the what, how, why, who, when, and where aspects of data. These regulations, ultimately, ensure key business values: data consistency, quality, and trustworthiness.

article thumbnail

AI at Scale isn’t Magic, it’s Data – Hybrid Data

Cloudera

The takeaway – businesses need control over all their data in order to achieve AI at scale and digital business transformation. The challenge for AI is how to do data in all its complexity – volume, variety, velocity. First you need the data analytics, data management, and data science tools.

article thumbnail

BMW Cloud Efficiency Analytics powered by Amazon QuickSight and Amazon Athena

AWS Big Data

It seamlessly consolidates data from various data sources within AWS, including AWS Cost Explorer (and forecasting with Cost Explorer ), AWS Trusted Advisor , and AWS Compute Optimizer. Data providers and consumers are the two fundamental users of a CDH dataset.