Remove Data Architecture Remove Data Governance Remove Risk
article thumbnail

7 types of tech debt that could cripple your business

CIO Business Intelligence

CIOs perennially deal with technical debts risks, costs, and complexities. While the impacts of legacy systems can be quantified, technical debt is also often embedded in subtler ways across the IT ecosystem, making it hard to account for the full list of issues and risks.

Risk 140
article thumbnail

The future of data: A 5-pillar approach to modern data management

CIO Business Intelligence

The proposed model illustrates the data management practice through five functional pillars: Data platform; data engineering; analytics and reporting; data science and AI; and data governance. Thats free money given to cloud providers and creates significant issues in end-to-end value generation.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Difference Between Data Architecture and Enterprise Architecture

erwin

Although there is some crossover, there are stark differences between data architecture and enterprise architecture (EA). That’s because data architecture is actually an offshoot of enterprise architecture. The Value of Data Architecture. Data Architecture and Data Modeling.

article thumbnail

5 Ways Data Modeling Is Critical to Data Governance

erwin

For decades, data modeling has been the optimal way to design and deploy new relational databases with high-quality data sources and support application development. Today’s data modeling is not your father’s data modeling software. So here’s why data modeling is so critical to data governance.

article thumbnail

What is data governance? Best practices for managing data assets

CIO Business Intelligence

Data governance definition Data governance is a system for defining who within an organization has authority and control over data assets and how those data assets may be used. It encompasses the people, processes, and technologies required to manage and protect data assets.

article thumbnail

How to Manage Risk with Modern Data Architectures

Cloudera

To ensure the stability of the US financial system, the implementation of advanced liquidity risk models and stress testing using (MI/AI) could potentially serve as a protective measure. To improve the way they model and manage risk, institutions must modernize their data management and data governance practices.

article thumbnail

Using Strategic Data Governance to Manage GDPR/CCPA Complexity

erwin

In light of recent, high-profile data breaches, it’s past-time we re-examined strategic data governance and its role in managing regulatory requirements. for alleged violations of the European Union’s General Data Protection Regulation (GDPR). Strengthen data security. How erwin Can Help. How erwin Can Help.